题目
输入一个字符串,按字典序打印出该字符串中字符的所有排列。例如输入字符串abc,则打印出由字符a,b,c所能排列出来的所有字符串abc,acb,bac,bca,cab和cba。
输入描述:
输入一个字符串,长度不超过9(可能有字符重复),字符只包括大小写字母。
解题思路
输入一个字符串,打印出该字符串中字符的所有排列。例如输入字符串abc,则输出由字符a,b,c所能排列出来的所有字符串abc,acb,bac,bca,cab和cba
正常人的思维是,固定第一个字符,然后依次将后面的字符串与前面的交换,那么排列的个数就是除了第一个字符以外,其他字符的排列个数+1。
也就是固定一个字符串之后,之后再将问题变小,只需求出后面子串的排列个数就可以得出结果,当然第一时间想到的就是递归的算法了。
下面这张图很清楚的给出了递归的过程:
去重
由于全排列就是从第一个数字起,每个数分别与它后面的数字交换,我们先尝试加个这样的判断——如果一个数与后面的数字相同那么这两个数就不交换了。例如abb,第一个数与后面两个数交换得bab,bba。然后abb中第二个数和第三个数相同,就不用交换了。但是对bab,第二个数和第三个数不同,则需要交换,得到bba。由于这里的bba和开始第一个数与第三个数交换的结果相同了,因此这个方法不行。
换种思维,对abb,第一个数a与第二个数b交换得到bab,然后考虑第一个数与第三个数交换,此时由于第三个数等于第二个数,所以第一个数就不再用与第三个数交换了。再考虑bab,它的第二个数与第三个数交换可以解决bba。此时全排列生成完毕!
这样,我们得到在全排列中去掉重复的规则:
去重的全排列就是从第一个数字起,每个数分别与它后面非重复出现的数字交换。
|
|